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Introduction

We consider exclusion and inclusion atoms with different syntactic definitions and the
axiomatizations of their implication problems.

The implication problems for atoms:
Does a set of atoms imply a given atom or not?

We also briefly discuss the team-based propositional logics obtained by adding these
atoms.
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Exclusion atoms

A team T = {s1, . . . , sn} is a finite set of assignments si : V −→ M, where V is a set
of variables and M is a set of values.
For x = ⟨x1, . . . , xn⟩, we write s(x) for ⟨s(x1), . . . , s(xn)⟩.

Exclusion atoms x |y (with |x | = |y |)
T |= x |y if and only if for all s1, s2 ∈ T , s1(x) ̸= s2(y).

x1 x2 y1 y2

s1 ▲ ♢ ♢ ▲
s2 ▲ ♢ ♢ ▲
s3 ♢ ♢ ♢ ▲

x1 x2 y1 y2

s1 ▲ ♢ ♢ ▲
s2 ▲ ♢ ♢ ♢
s3 ♢ ♢ ♢ ▲

It follows that exclusion atoms are downward closed.
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Systems for exclusion atoms

With “repetitions” we mean repeated variables within one sequence.

(E1-E4) Rules for repetition free exclusion [Cf. Casanova, Vidal ’83]

(E1) If x |x , then y |z
(E2) If x |y , then y |x
(E3) If x |y , then xu|yv
(E4) If xyz |uvw , then xzy |uwv∗ ∗(|x | = |u| and |y | = |v |)

(E1-E6) Rules for exclusion [H. ’24]

(E5) If xuu|yvv , then xu|yv
(E6) If xw |yw , then zz |xy .
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Typical completeness proof

Completeness theorem
Let Σ ∪ {x |y} be a set of exclusion atoms. If Σ |= x |y then Σ ⊢{E1−E6} x |y .

We prove the contrapositive (if Σ ̸⊢ x |y , then Σ ̸|= x |y) using a counterexample team.

x1 . . . xn y1 . . . yn z1 z2 . . .

s1 a1 − an . . . . . .
s2 . . . a1 − an . . .

The team is filled with values that appear only once, except for one repetition of
⟨a1, . . . , an⟩ such that s1(x) = s2(y).
We then need to check that T ̸|= x |y , and that T |= Σ.
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Approximate exclusion

Approximate exclusion
Let p be a real number such that 0 ≤ p ≤ 1. T |= x |py if and only if there is a
subteam T ′ ⊆ T , |T ′| ≤ p · |T |, such that T \ T ′ |= x |y .

Approximate exclusion atoms (e.g., x | 1
100

y)

are suitable when we accept that the data
set is flawed, up to some degree.

x1 x2 y1 y2

s1 • • ▲ ▲
s2 • ♠ ▲ ♢

..
.

..
.

..
.

..
.

..
.

s98 • ♠ ▲ ♢
s99 ♠ • ♠ ♠
s100 ♠ ♠ ♢ ▲
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System for approximate exclusion

(A) Rules for approximate exclusion [H. ’24]

(A1) For p < 1, if x |px , then y |0z
(A2) If x |py , then y |px
(A3) If x |py , then xu|pyv
(A4) If xuu|pyvv , then xu|pyv
(A5) If xyz |puvw , then xzy |puwv∗

(A6) If xw |pyw , then zz |pxy

(A7) For q ≤ p ≤ 1, if x |qy , then x |py
(A8) x |1y .

∗(|x | = |u| and |y | = |v |)
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Completeness theorem
Let Σ ∪ {x |py} be a set of approximate exclusion atoms with 0 ≤ p < 1

2 such that if
there are u|qv ∈ Σ with q > p, then r = min{q > p : u|qv ∈ Σ} exists.
If Σ |= x |py then Σ ⊢A x |py .

Again, we show that if Σ ̸⊢A x |py , then Σ ̸|= x |py using a counterexample team.

x1 . . . xn y1 . . . yn z1 z2 . . .

s1 a1 − an . . . . . .
s2 b1 − bn . . . . . .
s3 . . . a1 − an . . .
s4 . . . b1 − bn . . .
s5 . . . . . . . . .

We adjust the number of values that repeat and can add “good” lines like s5 with
values only appearing once.
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Propositional exclusion atoms

We observe that the counterexample teams have many values.

Can we define a team that uses only two values to prove completeness of the system?
No!

Consider the following entailment, which is sound in the propositional setting, but not
in the first-order setting: x1|x2, x2|x3, x3|x1 |= q|z .

x1 x2 x3 z1 . . .

s1 0 1 0 . . .
s2 0 1 0 . . .

x1 x2 x3 z1 . . .

s1 0 1 2 . . .
s2 0 1 2 . . .

Open problem: Axiomatization of propositional exclusion atoms.
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First-order VS Propositional atoms

Atom Same axiomatization?

Dependence Yes (GV13)
Independece (non-conditional) Yes (GV13)

Exclusion No
Inclusion Yes (We will see this soon)
Anonymity No
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Propositional exclusion logic

In progress: Axiomatization of propositional exclusion logic.

Expressivity result known through the following observations:

- CPL(|) is downwards closed and has the empty team property.

- CPL(Dep) is complete for all downwards closed team properties with the empty
team. (Yang, Väänänen ’16)

=⇒ CPL(|) ≤ CPL(Dep).

- CPL(Dep) ≡ CPL(Constancy).

- We can capture constancy of p by the (extended) exclusion atom p|¬p (or
⊤p|p⊥).

=⇒ CPL(|) ≡ CPL(Dep).
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Inclusion atoms

Inclusion atoms are written as x ⊆ y , where |x | = |y |. We recall their semantics,

T |= x ⊆ y iff for all s1 ∈ T there exists s2 ∈ T : s1(x) = s2(y).

x1 x2 y1 y2

s1 ▲ ▲ ▲ ♢
s2 ▲ ♢ ♢ ♢
s3 ♢ ♢ ▲ ▲

x1 x2 y1 y2

s1 ▲ ▲ ▲ ♢
s2 ▲ ♢ ▲ ♢
s3 ♢ ♢ ▲ ▲

It follows that inclusion atoms are union closed.
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Inclusion variants

Repetition free inclusion p1p2 ⊆ q1q2 (x1x2 ⊆ y1y2)
Inclusion p1p2 ⊆ q1q1 (x1x2 ⊆ y1y1)

Propositional inclusion with constants ⊤p2p3 ⊆ q1⊥q1
Extended inclusion α1α2 ⊆ β1β2

Example

Consider the team T = {s2021, s2022, s2023}, and let {pa, pb} be such that
s2021(pa) = 1 iff student a passed their exams in 2021, etc.

T |= pa ⊆ pb – if student a failed one year there is a year when student b failed.
T |= papb ⊆ papa – each year, student a passed their exams iff student b did.
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(Repetition free) inclusion atoms

(I1-I4) Rules for repetition free inclusion [Casanova et.al. ’84]

(I1) x ⊆ x .

(I2) If x ⊆ z and z ⊆ y , then x ⊆ y .

(I3) If xyz ⊆ uvw , then xzy ⊆ uwv .

(I4) If xy ⊆ uv , then x ⊆ u.

(I1-I6) Rules for inclusion [cf. Mitchell ’83]

(I5) If xy ⊆ uv , then xyy ⊆ uvv .

(I6) If x1x2 ⊆ y1y1 and z ⊆ vx2, then z ⊆ vx1.*

*Repetition on RHS allows us to express equalities between variables!

We give an alternative completeness proof using only two values.
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Completeness theorem
Let Σ be a set of inclusion atoms. If Σ |= x ⊆ y , then Σ ⊢{I1−I6} x ⊆ y .

Proof.

Assume that Σ ̸⊢ x ⊆ y . We define the counterexample team T by s ∈ T iff

(1) s : V −→ {0, 1},
(2) for zi , zj such that Σ ⊢ zizj ⊆ zkzk : s(zi ) = s(zj),

If there is yj , yk such that they are equal but xj , xk are not, then we stop here.
Otherwise demand also:

(3) for w such that Σ ⊢ w ⊆ y : s(w) ̸= 0n.

The value 0n in condition (3) is never removed by (2), ensuring that T ̸|= x ⊆ y .
We can also show that for u ⊆ v ∈ Σ, T |= u ⊆ v .
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x1 x2 y1 y2 z1

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 1 1 1
1 1 1 1 0
1 0 1 1 0
0 1 1 1 0
0 0 1 1 0

x1 x2 y1 y2 z1

1 1 0 0 1
1 0 0 0 1
0 1 0 0 1
0 0 0 0 1
1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Table: Counterexample team consisting of the white lines, for the consequence x1x2 ⊆ y1y2 and
assumption set Σ from which we can derive y1y2 ⊆ z1z1 and x1z1 ⊆ y1y2.
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x1 x2 y1 y2 z1

1 1 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 1 1 1
1 1 1 0 0
1 0 1 0 0
0 1 1 0 0
0 0 1 0 0

x1 x2 y1 y2 z1

1 1 0 1 1
1 0 0 1 1
0 1 0 1 1
0 0 0 1 1
1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Table: Counterexample team consisting of the white lines, for the consequence x1x2 ⊆ y1y2 and
assumption set Σ from which we can derive y2z1 ⊆ z1z1 and x1z1 ⊆ y1y2.

Since we only need two values to build counterexample teams, the system is complete
for propositional inclusion atoms.
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Propositional inclusion with constants

We allow ⊤,⊥ to appear in the atom, for which s(⊤) = 1 and s(⊥) = 0 always hold.

Example

T |= ⊤⊥ ⊆ papb – there is a year where student a passed their exams but student b
did not.
T |= pa ⊆ ⊤ – student a passed their exams every year.

We add the following rules to I1-I6 from earlier:

(C1) If ⊤ ⊆ ⊥, then q ⊆ r .

(C2) If p ⊆ q, then p⊤ ⊆ q⊤ and p⊥ ⊆ q⊥. [Yang ’22]

Let x be a sequence of constants ⊤,⊥.

(C3) If A ⊆ {r ⊆ q | ri ∈ {pi ,⊤,⊥}} is such that for any* x, there is r ⊆ q ∈ A such
that x matches the ⊤⊥-part in r , then p ⊆ q.
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Consider the instances of C3 of the following form:

If

⊤p2 . . . pn ⊆ q

p1⊤ . . . pn ⊆ q

. . .

p1p2 . . .⊤ ⊆ q

⊥⊥ . . .⊥ ⊆ q

then p ⊆ q. (∗)

The number of assumptions, i.e., the arity, of (∗) for atoms of arity n is n + 1, and we
show that it cannot be reduced. Thus extended inclusion atoms do not have a k-ary
proof system.
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We consider the rule (∗) for atoms of arity n.

Theorem. There is no k−ary axiomatization of propositional inclusion with constants.

We follow the general strategy presented in Casanova et. al. ’84:

(1) No assumption is derived from the others.

(2) The only nontrivial atom derivable from the assumption set is the conclusion of
the rule.

Build teams witnessing (1).
For (2), let us first reduce the nontrivial atoms we need to consider.



Introduction Exclusion Inclusion Conclusion

Lemma

Let all v ⊆ w ∈ Σ be such that w never contains all of q, then Σ ̸|= v ⊆ q for
nontrivial v ⊆ q.

Proof.

We can build a team that satisfies all atoms in Σ but not v ⊆ q.
In particular, {p′ ⊆ q′ | p′, q′ proper subsequences of p, q} ̸|= p ⊆ q due to the
following team:

p1 p2 . . . pn q1 q2 . . . qn

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0

. . .
. . .

0 0 . . . 0 0 0 . . . 1
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We must check all cases with different types of variable configurations of v in v ⊆ q.

The main cases:

– There is some rj in v .

– vi ∈ {p1, . . . , pn, q1, . . . , qn,⊤,⊥} for all 1 ≤ i ≤ n,

- There is some vi such that vi = ⊥.
- vi ∈ {p1, . . . , pn, q1, . . . , qn,⊤} for all 1 ≤ i ≤ n with at least two
occurrences of ⊤ or both something from q and ⊤ (or q and p).

- vi ∈ {p1, . . . , pn,⊤} for all 1 ≤ i ≤ n with at most one ⊤ in v .
- vi ∈ {q1, . . . , qn} for all 1 ≤ i ≤ n.
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Let v ⊆ q be such that vi ∈ {p1, . . . , pn, q1, . . . , qn,⊤,⊥}

(c) If there are between 1 and n − 1
many ⊥ in v , then we build the
following team:

p1 p2 . . . pn q1 q2 . . . qn

1 1 . . . 1 1 1 . . . 1
1 1 . . . 1 0 0 . . . 0

(g) If vi ∈ {p1, . . . , pn,⊤} for all
1 ≤ i ≤ n, and there is ≥ 2
⊤ in v , then construct:

p1 p2 . . . pn q1 q2 . . . qn

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0

. . .
. . .

0 0 . . . 0 0 0 . . . 1
0 0 . . . 0 0 0 . . . 0

By adjusting these two types of teams we can cover all cases.
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Theorem. I1-I6 and C1-C3 form a complete system for propositional inclusion with
constants: If Σ |= p ⊆ q, then Σ ⊢ p ⊆ q.

The proof is similar to before, we first build a team that respects equalities and
constants, and then find a value for condition (3) by C3.
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Propositional and modal inclusion logic

In CPL(⊆) and ML(⊆), the inclusion atoms are of the form

α1 . . . αn ⊆ β1 . . . βn,

where αi , βi are in CPL (or ML). We obtain the same expressivity with atoms of the
form

⊤ ⊆ α.

CPL(⊆) is axiomatized in Yang ’22, and ML(⊆) in Anttila, H. & Yang ’25.
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Conclusion

Syntax Exclusion atom Axiomatization?

w/o repetitions x |y Yes, Cas83
w/ repetitions x |y Yes, Cas83+H24

w/ rep., approximations x |ry Yes, H24
propositional p|q ??

Syntax Inclusion atom Axiomatization?

w/o repetitions x ⊆ y , p ⊆ q Yes, Cas84
w/ repetitions x ⊆ y , p ⊆ q Yes, Mit84

w/ rep., constants ⊤ ⊆ p Yes but not finite
w/ rep., approximations x ⊆r y ??
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Conclusion

Logic Axiomatization?

CPL(⊆) Yang22
ML(⊆) AHY25
CPL(|) In progress

CPL(|,⊆) In progress

Thank you!



Aleksi Anttila, Matilda Häggblom, and Fan Yang.
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